WORKSHEET: The Cartesian Plane

Name:

The Cartesian plane is a number grid, like the one given on the right of this page. The numbers, or coordinates, on it allow us to locate the exact location of a point on the plane.

There is a centre point, called the origin (O). Two axes are drawn through the origin to make the Cartesian plane. These axes are called the x-axis (horizontal) and the y-axis (vertical).

Have a good look at the Cartesian plane pictured. Note that the x -axis has negative values to the left of O , and the y -axis has negative values below 0 .

To specify the position of a point on the Cartesian plane, we use a coordinate (x, y).

For example, the position on the point in the plane on the right has an x-value of 3 and a y-value of 2 . Therefore, it has a coordinate of $(3,2)$.

The x - and y-axes divide the Cartesian plane into four sections called quadrants. Quadrants are labelled in an anti-clockwise direction shown below.

QUESTIONS:

1. State the coordinates of A, B, and C.

A(,)
B(,)
C(,)

2. On the same set of axes below, plot the following points and state which quadrant the lie in:
a. A(1,5) QUADRANT: \qquad e. $\mathrm{E}(2,-4)$ QUADRANT: \qquad
b. $\mathrm{B}(7,0)$ QUADRANT: \qquad f. $F(0,1)$ QUADRANT: \qquad
c. $C(-1,3)$ QUADRANT:
g. $G(-8,6)$ QUADRANT: \qquad
d. $\mathrm{D}(-5,-9)$ QUADRANT: \qquad h. $\mathrm{H}(6,10)$ QUADRANT: ___

3. On different sets of axes below, show all the points with:
a. x-coordinate equal to 3
c. negative x-coordinate
b. y-coordinate equal to -2
d. positive x and negative y-coordinate

4. Consider the set of points $\{(0,0),(1,3),(2,6),(3,9)\}$.
a. Plot the points on a set of axes.
b. Determine whether the points lie in a straight line: yes / no
c. Determine which of the rules fits the set of points:
i. $y=x+1$
ii. $y=x+3$
iii. $y=3-x$
iv. $y=3 x$

WORKSHEET ANSWERS: The Cartesian Plane

Name:

The Cartesian plane is a number grid, like the one given on the right of this page. The numbers, or coordinates, on it allow us to locate the exact location of a point on the plane.

There is a centre point, called the origin (O). Two axes are drawn through the origin to make the Cartesian plane. These axes are called the x-axis (horizontal) and the y-axis (vertical).

Have a good look at the Cartesian plane pictured. Note that the x -axis has negative values to the left of O , and the y -axis has negative values below 0 .

To specify the position of a point on the Cartesian plane, we use a coordinate (x, y).

For example, the position on the point in the plane on the right has an x-value of 3 and a y-value of 2 . Therefore, it has a coordinate of $(3,2)$.

The x - and y-axes divide the Cartesian plane into four sections called quadrants. Quadrants are labelled in an anti-clockwise direction shown below.

QUESTIONS:

1. State the coordinates of A, B, and C.

A (2, 3)
B($-2,1$)

C (1, -2)

2. On the same set of axes below, plot the following points and state which quadrant the lie in:
a. $\mathrm{A}(1,5)$ QUADRANT: 1
b. $B(7,0)$ QUADRANT: $1 / 2$
c. $\mathrm{C}(-1,3)$ QUADRANT: 2
d. $\mathrm{D}(-5,-9)$ QUADRANT: 3
e. $E(2,-4)$ QUADRANT: 4
f. $F(0,1)$ QUADRANT: $1 / 2$
g. $G(-8,6)$ QUADRANT: 2
h. $\mathrm{H}(6,10)$ QUADRANT: 1

3. On different sets of axes below, show all the points with:
a. x-coordinate equal to 3
c. negative x-coordinate
b. y-coordinate equal to -2
d. positive x and negative y-coordinate

4. Consider the set of points $\{(0,0),(1,3),(2,6),(3,9)\}$.
a. Plot the points on a set of axes.
b. Determine whether the points lie in a straight line: yes / no
c. Determine which of the rules fits the set of points:
i. $y=x+1$
ii. $y=x+3$
iii. $y=3-x$
iv. $y=3 x$

Test by substituting $\mathrm{x}=1$
If $x=1, y=3 x$
Therefore, $\mathrm{y}=3$ TRUE
Works for other coordinate values

Name :
Teacher:

Score :
Date :

Halloween Bat

For each Shape plot the ordered pairs on the axis and connect them in order. Do not connect the Shapes to each other.

Shape 1

$(7,6),(8,5),(9.5,4),(11,3.5),(13,3),(10.5,2.5),(8.5,1.5),(7.5,0.5),(5, .5),(3.5,0)$
$(2.5,-1),(2,-2),(1,-1.5),(-1,-1),(-2.5,-1.5),(-4,-2.5),(-5,0),(-7,1.5),(-9,1.5)$
$(-8.5,4),(-9.5,5.5),(-12,6),(-13,9),(-14,10.5),(-11,10.5),(-9,10.5),(-8,11),(-7,8)$
$(-5.5,5.5),(-4,4),(-2.5,6),(-2.5,5),(-1.5,5),(-0.5,4.5),(0,5),(-0.5,3),(0,2.5)$
$(1,3),(3,4),(5,5),(7,6)$

Shape 2

$(-3,4),(-2.5,4.5),(-2.5,3.5),(-3,4)$

Shape 3

$(-2,3.5),(-1,4),(-1,3.5),(-2,3.5)$

